The Effect of RNA Secondary Structure on the Self-Assembly of Viral Capsids.

نویسندگان

  • Christian Beren
  • Lisa L Dreesens
  • Katherine N Liu
  • Charles M Knobler
  • William M Gelbart
چکیده

Previous work has shown that purified capsid protein (CP) of cowpea chlorotic mottle virus (CCMV) is capable of packaging both purified single-stranded RNA molecules of normal composition (comparable numbers of A, U, G, and C nucleobases) and of varying length and sequence, and anionic synthetic polymers such as polystyrene sulfonate. We find that CCMV CP is also capable of packaging polyU RNAs, which-unlike normal-composition RNAs-do not form secondary structures and which act as essentially structureless linear polymers. Following our canonical two-step assembly protocol, polyU RNAs ranging in length from 1000 to 9000 nucleotides (nt) are completely packaged. Surprisingly, negative-stain electron microscopy shows that all lengths of polyU are packaged into 22-nm-diameter particles despite the fact that CCMV CP prefers to form 28-nm-diameter (T = 3) particles when packaging normal-composition RNAs. PolyU RNAs >5000 nt in length are packaged into multiplet capsids, in which a single RNA molecule is shared between two or more 22-nm-diameter capsids, in analogy with the multiplets of 28-nm-diameter particles formed with normal-composition RNAs >5000 nt long. Experiments in which viral RNA competes for viral CP with polyUs of equal length show that polyU, despite its lack of secondary structure, is packaged more efficiently than viral RNA. These findings illustrate that the secondary structure of the RNA molecule-and its absence-plays an essential role in determining capsid structure during the self-assembly of CCMV-like particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-assembly of viral capsid protein and RNA molecules of different sizes: requirement for a specific high protein/RNA mass ratio.

Virus-like particles can be formed by self-assembly of capsid protein (CP) with RNA molecules of increasing length. If the protein "insisted" on a single radius of curvature, the capsids would be identical in size, independent of RNA length. However, there would be a limit to length of the RNA, and one would not expect RNA much shorter than native viral RNA to be packaged unless multiple copies...

متن کامل

Role of RNA Branchedness in the Competition for Viral Capsid Proteins.

To optimize binding-and packaging-by their capsid proteins (CP), single-stranded (ss) RNA viral genomes often have local secondary/tertiary structures with high CP affinity, with these "packaging signals" serving as heterogeneous nucleation sites for the formation of capsids. Under typical in vitro self-assembly conditions, however, and in particular for the case of many ssRNA viruses whose CP ...

متن کامل

Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication.

Rubella virus is an enveloped positive-strand RNA virus of the family TOGAVIRIDAE: Virions are composed of three structural proteins: a capsid and two membrane-spanning glycoproteins, E2 and E1. During virus assembly, the capsid interacts with genomic RNA to form nucleocapsids. In the present study, we have investigated the role of capsid phosphorylation in virus replication. We have identified...

متن کامل

RT-PCR Detection of Coxsackievirus B3: A Viral Myocarditis

Backgrounds and Aims: Coxsakievirus B3 (CVB3), one of the six Coxsakievirus B serotypes, is a member of the Enterovirus genus within the Picornaviridae family. CVB3 is an important pathogen of viral myocarditis, which accounts for more than 50% of viral myocarditis cases. The genome of CVB3, like that of other Entroviruses, is a single-stranded, sense, polyadenylated RNA molecule with 7400 nucl...

متن کامل

Human cytomegalovirus virions differentially incorporate viral and host cell RNA during the assembly process.

While analyzing human cytomegalovirus (HCMV) gene expression in infected cells by RNA-specific nucleic acid sequence-based amplification (NASBA), positive results were observed for HCMV RNA encoded by several viral genes immediately after the addition of the virus. UV-inactivated virus also gave a positive NASBA result without establishing active infection, suggesting that RNA was associated wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 113 2  شماره 

صفحات  -

تاریخ انتشار 2017